Catalyst alternatives and similar packages
Based on the "Machine Learning and Data Science" category.
Alternatively, view Catalyst alternatives based on common mentions on social networks and blogs.
-
Accord.NET
DISCONTINUED. Machine learning framework combined with audio and image processing libraries (computer vision, computer audition, signal processing and statistics). -
TensorFlow.NET
.NET Standard bindings for Google's TensorFlow for developing, training and deploying Machine Learning models in C# and F#. -
m2cgen
Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependencies -
AForge.NET
AForge.NET Framework is a C# framework designed for developers and researchers in the fields of Computer Vision and Artificial Intelligence - image processing, neural networks, genetic algorithms, machine learning, robotics, etc. -
Deedle
Easy to use .NET library for data and time series manipulation and for scientific programming -
Accord.NET Extensions
DISCONTINUED. Advanced image processing and computer vision algorithms made as fluent extensions. -
SciSharp STACK
A rich machine learning ecosystem for .NET created by porting the most popular Python libraries to C#.
CodeRabbit: AI Code Reviews for Developers

* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of Catalyst or a related project?
README
catalyst is a C# Natural Language Processing library built for speed. Inspired by spaCy's design, it brings pre-trained models, out-of-the box support for training word and document embeddings, and flexible entity recognition models.
โก Features
- Fast, modern pure-C# NLP library, supporting .NET standard 2.0
- Cross-platform, runs anywhere .NET core is supported - Windows, Linux, macOS and even ARM
- Non-destructive tokenization, >99.9% RegEx-free, >1M tokens/s on a modern CPU
- Named Entity Recognition (gazeteer, rule-based & perceptron-based)
- Pre-trained models based on Universal Dependencies project
- Custom models for learning Abbreviations & Senses
- Out-of-the-box support for training FastText and StarSpace embeddings (pre-trained models coming soon)
- Part-of-speech tagging
- Language detection using FastText or cld3
- Efficient binary serialization based on MessagePack
- Pre-built models for language packages โจ
- Lemmatization โจ (using lookup tables ported from spaCy)
New: Language Packages โจ
We're migrating our model repository to use NuGet packages for all language-specific data and models.
You can find all new language packages here.
The new models are trained on the latest release of Universal Dependencies v2.7.
This is technically not a breaking change yet, but our online repository will be deprecated in the near future - so you should migrate to the new NuGet packages.
When using the new model packages, you can usually remove this line from your code: Storage.Current = new OnlineRepositoryStorage(new DiskStorage("catalyst-models"));
, or replace it with Storage.Current = new DiskStorage("catalyst-models")
if you are storing your own models locally.
We've also added the option to store and load models using streams:
// Creates and stores the model
var isApattern = new PatternSpotter(Language.English, 0, tag: "is-a-pattern", captureTag: "IsA");
isApattern.NewPattern(
"Is+Noun",
mp => mp.Add(
new PatternUnit(P.Single().WithToken("is").WithPOS(PartOfSpeech.VERB)),
new PatternUnit(P.Multiple().WithPOS(PartOfSpeech.NOUN, PartOfSpeech.PROPN, PartOfSpeech.AUX, PartOfSpeech.DET, PartOfSpeech.ADJ))
));
using(var f = File.OpenWrite("my-pattern-spotter.bin"))
{
await isApattern.StoreAsync(f);
}
// Load the model back from disk
var isApattern2 = new PatternSpotter(Language.English, 0, tag: "is-a-pattern", captureTag: "IsA");
using(var f = File.OpenRead("my-pattern-spotter.bin"))
{
await isApattern2.LoadAsync(f);
}
โจ Getting Started
Using catalyst is as simple as installing its NuGet Package, and setting the storage to use our online repository. This way, models will be lazy loaded either from disk or downloaded from our online repository. Check out also some of the sample projects for more examples on how to use catalyst.
Catalyst.Models.English.Register(); //You need to pre-register each language (and install the respective NuGet Packages)
Storage.Current = new DiskStorage("catalyst-models");
var nlp = await Pipeline.ForAsync(Language.English);
var doc = new Document("The quick brown fox jumps over the lazy dog", Language.English);
nlp.ProcessSingle(doc);
Console.WriteLine(doc.ToJson());
You can also take advantage of C# lazy evaluation and native multi-threading support to process a large number of documents in parallel:
var docs = GetDocuments();
var parsed = nlp.Process(docs);
DoSomething(parsed);
IEnumerable<IDocument> GetDocuments()
{
//Generates a few documents, to demonstrate multi-threading & lazy evaluation
for(int i = 0; i < 1000; i++)
{
yield return new Document("The quick brown fox jumps over the lazy dog", Language.English);
}
}
void DoSomething(IEnumerable<IDocument> docs)
{
foreach(var doc in docs)
{
Console.WriteLine(doc.ToJson());
}
}
Training a new FastText word2vec embedding model is as simple as this:
var nlp = await Pipeline.ForAsync(Language.English);
var ft = new FastText(Language.English, 0, "wiki-word2vec");
ft.Data.Type = FastText.ModelType.CBow;
ft.Data.Loss = FastText.LossType.NegativeSampling;
ft.Train(nlp.Process(GetDocs()));
ft.StoreAsync();
For fast embedding search, we have also released a C# version of the "Hierarchical Navigable Small World" (HNSW) algorithm on NuGet, based on our fork of Microsoft's HNSW.Net. We have also released a C# version of the "Uniform Manifold Approximation and Projection" (UMAP) algorithm for dimensionality reduction on GitHub and on NuGet.
๐ Links
Documentation | |
---|---|
Contribute | How to contribute to catalyst codebase. |
Samples | Sample projects demonstrating catalyst capabilities |
Join our gitter channel |