Dapper alternatives and similar packages
Based on the "ORM" category.
Alternatively, view Dapper alternatives based on common mentions on social networks and blogs.
-
TypeORM
ORM for TypeScript and JavaScript. Supports MySQL, PostgreSQL, MariaDB, SQLite, MS SQL Server, Oracle, SAP Hana, WebSQL databases. Works in NodeJS, Browser, Ionic, Cordova and Electron platforms. -
Entity Framework
EF Core is a modern object-database mapper for .NET. It supports LINQ queries, change tracking, updates, and schema migrations. -
SqlSugar
.Net aot ORM Fastest ORM Simple Easy VB.NET Sqlite orm Oracle ORM Mysql Orm 虚谷数据库 postgresql ORm SqlServer oRm 达梦 ORM 人大金仓 ORM 神通ORM C# ORM , C# ORM .NET ORM NET5 ORM .NET6 ORM ClickHouse orm QuestDb ,TDengine ORM,OceanBase orm,GaussDB orm ,Tidb orm Object/Relational Mapping -
FreeSql
🦄 .NET aot orm, C# orm, VB.NET orm, Mysql orm, Postgresql orm, SqlServer orm, Oracle orm, Sqlite orm, Firebird orm, 达梦 orm, 人大金仓 orm, 神通 orm, 翰高 orm, 南大通用 orm, 虚谷 orm, 国产 orm, Clickhouse orm, QuestDB orm, MsAccess orm. -
EFCore.BulkExtensions
Entity Framework EF Core efcore Bulk Batch Extensions with BulkCopy in .Net for Insert Update Delete Read (CRUD), Truncate and SaveChanges operations on SQL Server, PostgreSQL, MySQL, SQLite -
Dapper Extensions
Dapper Extensions is a small library that complements Dapper by adding basic CRUD operations (Get, Insert, Update, Delete) for your POCOs. For more advanced querying scenarios, Dapper Extensions provides a predicate system. The goal of this library is to keep your POCOs pure by not requiring any attributes or base class inheritance. -
Entity Framework 6
This is the codebase for Entity Framework 6 (previously maintained at https://entityframework.codeplex.com). Entity Framework Core is maintained at https://github.com/dotnet/efcore. -
SmartSql
SmartSql = MyBatis in C# + .NET Core+ Cache(Memory | Redis) + R/W Splitting + PropertyChangedTrack +Dynamic Repository + InvokeSync + Diagnostics -
NPoco
Simple microORM that maps the results of a query onto a POCO object. Project based on Schotime's branch of PetaPoco -
SQLProvider
A general F# SQL database erasing type provider, supporting LINQ queries, schema exploration, individuals, CRUD operations and much more besides. -
MongoDB.Entities
A data access library for MongoDB with an elegant api, LINQ support and built-in entity relationship management -
MongoDB Repository pattern implementation
DISCONTINUED. Repository abstraction layer on top of Official MongoDB C# driver -
DbExtensions
Data-access framework with a strong focus on query composition, granularity and code aesthetics. -
NReco.Data
Fast DB-independent DAL for .NET Core: abstract queries, SQL commands builder, schema-less data access, POCO mapping (micro-ORM). -
EntityFrameworkCore.SqlServer.SimpleBulks
Very simple .net library that supports bulk insert (retain client populated Ids or return db generated Ids), bulk update, bulk delete, bulk merge and bulk match operations. Lambda Expression is supported. -
Linq.Expression.Optimizer
System.Linq.Expression expressions optimizer. http://thorium.github.io/Linq.Expression.Optimizer -
EntityFramework.DatabaseMigrator
EntityFramework.DatabaseMigrator is a WinForms utility to help manage Entity Framework 6.0+ migrations.
InfluxDB - Purpose built for real-time analytics at any scale.
* Code Quality Rankings and insights are calculated and provided by Lumnify.
They vary from L1 to L5 with "L5" being the highest.
Do you think we are missing an alternative of Dapper or a related project?
README
Dapper - a simple object mapper for .Net
Release Notes
Located at stackexchange.github.io/Dapper
Packages
MyGet Pre-release feed: https://www.myget.org/gallery/dapper
Package | NuGet Stable | NuGet Pre-release | Downloads | MyGet |
---|---|---|---|---|
Dapper | ||||
Dapper.Contrib | ||||
Dapper.EntityFramework | ||||
Dapper.EntityFramework.StrongName | ||||
Dapper.Rainbow | ||||
Dapper.SqlBuilder | ||||
Dapper.StrongName |
Features
Dapper is a NuGet library that you can add in to your project that will extend your IDbConnection
interface.
It provides 3 helpers:
Execute a query and map the results to a strongly typed List
public static IEnumerable<T> Query<T>(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)
Example usage:
public class Dog
{
public int? Age { get; set; }
public Guid Id { get; set; }
public string Name { get; set; }
public float? Weight { get; set; }
public int IgnoredProperty { get { return 1; } }
}
var guid = Guid.NewGuid();
var dog = connection.Query<Dog>("select Age = @Age, Id = @Id", new { Age = (int?)null, Id = guid });
Assert.Equal(1,dog.Count());
Assert.Null(dog.First().Age);
Assert.Equal(guid, dog.First().Id);
Execute a query and map it to a list of dynamic objects
public static IEnumerable<dynamic> Query (this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null, bool buffered = true)
This method will execute SQL and return a dynamic list.
Example usage:
var rows = connection.Query("select 1 A, 2 B union all select 3, 4").AsList();
Assert.Equal(1, (int)rows[0].A);
Assert.Equal(2, (int)rows[0].B);
Assert.Equal(3, (int)rows[1].A);
Assert.Equal(4, (int)rows[1].B);
Execute a Command that returns no results
public static int Execute(this IDbConnection cnn, string sql, object param = null, SqlTransaction transaction = null)
Example usage:
var count = connection.Execute(@"
set nocount on
create table #t(i int)
set nocount off
insert #t
select @a a union all select @b
set nocount on
drop table #t", new {a=1, b=2 });
Assert.Equal(2, count);
Execute a Command multiple times
The same signature also allows you to conveniently and efficiently execute a command multiple times (for example to bulk-load data)
Example usage:
var count = connection.Execute(@"insert MyTable(colA, colB) values (@a, @b)",
new[] { new { a=1, b=1 }, new { a=2, b=2 }, new { a=3, b=3 } }
);
Assert.Equal(3, count); // 3 rows inserted: "1,1", "2,2" and "3,3"
This works for any parameter that implements IEnumerable for some T.
Performance
A key feature of Dapper is performance. The following metrics show how long it takes to execute a SELECT
statement against a DB (in various config, each labeled) and map the data returned to objects.
The benchmarks can be found in Dapper.Tests.Performance (contributions welcome!) and can be run via:
dotnet run -p .\benchmarks\Dapper.Tests.Performance\ -c Release -f netcoreapp3.1 -- -f * --join
Output from the latest run is:
BenchmarkDotNet=v0.12.1, OS=Windows 10.0.19041.208 (2004/?/20H1)
Intel Core i7-7700HQ CPU 2.80GHz (Kaby Lake), 1 CPU, 8 logical and 4 physical cores
.NET Core SDK=3.1.201
[Host] : .NET Core 3.1.3 (CoreCLR 4.700.20.11803, CoreFX 4.700.20.12001), X64 RyuJIT
ShortRun : .NET Core 3.1.3 (CoreCLR 4.700.20.11803, CoreFX 4.700.20.12001), X64 RyuJIT
ORM | Method | Return | Mean | StdDev | Error | Gen 0 | Gen 1 | Gen 2 | Allocated |
---|---|---|---|---|---|---|---|---|---|
Belgrade | ExecuteReader | Post | 94.46 μs | 8.115 μs | 12.268 μs | 1.7500 | 0.5000 | - | 8.42 KB |
Hand Coded | DataTable | dynamic | 105.43 μs | 0.998 μs | 1.508 μs | 3.0000 | - | - | 9.37 KB |
Hand Coded | SqlCommand | Post | 106.58 μs | 1.191 μs | 1.801 μs | 1.5000 | 0.7500 | 0.1250 | 7.42 KB |
Dapper | QueryFirstOrDefault<dynamic> | dynamic | 119.52 μs | 1.320 μs | 2.219 μs | 3.6250 | - | - | 11.39 KB |
Dapper | 'Query<dynamic> (buffered)' | dynamic | 119.93 μs | 1.943 μs | 2.937 μs | 2.3750 | 1.0000 | 0.2500 | 11.73 KB |
Massive | 'Query (dynamic)' | dynamic | 120.31 μs | 1.340 μs | 2.252 μs | 2.2500 | 1.0000 | 0.1250 | 12.07 KB |
Dapper | QueryFirstOrDefault<T> | Post | 121.57 μs | 1.564 μs | 2.364 μs | 1.7500 | 0.7500 | - | 11.35 KB |
Dapper | 'Query<T> (buffered)' | Post | 121.67 μs | 2.913 μs | 4.403 μs | 1.8750 | 0.8750 | - | 11.65 KB |
PetaPoco | 'Fetch<T> (Fast)' | Post | 124.91 μs | 4.015 μs | 6.747 μs | 2.0000 | 1.0000 | - | 11.5 KB |
Mighty | Query<T> | Post | 125.23 μs | 2.932 μs | 4.433 μs | 2.2500 | 1.0000 | - | 12.6 KB |
LINQ to DB | Query<T> | Post | 125.76 μs | 2.038 μs | 3.081 μs | 2.2500 | 0.7500 | 0.2500 | 10.62 KB |
PetaPoco | Fetch<T> | Post | 127.48 μs | 4.283 μs | 6.475 μs | 2.0000 | 1.0000 | - | 12.18 KB |
LINQ to DB | 'First (Compiled)' | Post | 128.89 μs | 2.627 μs | 3.971 μs | 2.5000 | 0.7500 | - | 10.92 KB |
Mighty | Query<dynamic> | dynamic | 129.20 μs | 2.577 μs | 3.896 μs | 2.0000 | 1.0000 | - | 12.43 KB |
Mighty | SingleFromQuery<T> | Post | 129.41 μs | 2.094 μs | 3.166 μs | 2.2500 | 1.0000 | - | 12.6 KB |
Mighty | SingleFromQuery<dynamic> | dynamic | 130.59 μs | 2.432 μs | 3.677 μs | 2.0000 | 1.0000 | - | 12.43 KB |
Dapper | 'Contrib Get<T>' | Post | 134.74 μs | 1.816 μs | 2.746 μs | 2.5000 | 1.0000 | 0.2500 | 12.29 KB |
ServiceStack | SingleById<T> | Post | 135.01 μs | 1.213 μs | 2.320 μs | 3.0000 | 1.0000 | 0.2500 | 15.27 KB |
LINQ to DB | First | Post | 151.87 μs | 3.826 μs | 5.784 μs | 3.0000 | 1.0000 | 0.2500 | 13.97 KB |
EF 6 | SqlQuery | Post | 171.00 μs | 1.460 μs | 2.791 μs | 3.7500 | 1.0000 | - | 23.67 KB |
DevExpress.XPO | GetObjectByKey<T> | Post | 172.36 μs | 3.758 μs | 5.681 μs | 5.5000 | 1.2500 | - | 29.06 KB |
Dapper | 'Query<T> (unbuffered)' | Post | 174.40 μs | 3.296 μs | 4.983 μs | 2.0000 | 1.0000 | - | 11.77 KB |
Dapper | 'Query<dynamic> (unbuffered)' | dynamic | 174.45 μs | 1.988 μs | 3.340 μs | 2.0000 | 1.0000 | - | 11.81 KB |
DevExpress.XPO | FindObject<T> | Post | 181.76 μs | 5.554 μs | 9.333 μs | 8.0000 | - | - | 27.15 KB |
DevExpress.XPO | Query<T> | Post | 189.81 μs | 4.187 μs | 8.004 μs | 10.0000 | - | - | 31.61 KB |
EF Core | 'First (Compiled)' | Post | 199.72 μs | 3.983 μs | 7.616 μs | 4.5000 | - | - | 13.8 KB |
NHibernate | Get<T> | Post | 248.71 μs | 6.604 μs | 11.098 μs | 5.0000 | 1.0000 | - | 29.79 KB |
EF Core | First | Post | 253.20 μs | 3.033 μs | 5.097 μs | 5.5000 | - | - | 17.7 KB |
NHibernate | HQL | Post | 258.70 μs | 11.716 μs | 17.712 μs | 5.0000 | 1.0000 | - | 32.1 KB |
EF Core | SqlQuery | Post | 268.89 μs | 19.349 μs | 32.516 μs | 6.0000 | - | - | 18.5 KB |
EF 6 | First | Post | 278.46 μs | 12.094 μs | 18.284 μs | 13.5000 | - | - | 44.18 KB |
EF Core | 'First (No Tracking)' | Post | 280.88 μs | 8.192 μs | 13.765 μs | 3.0000 | 0.5000 | - | 19.38 KB |
NHibernate | Criteria | Post | 304.90 μs | 2.232 μs | 4.267 μs | 11.0000 | 1.0000 | - | 60.29 KB |
EF 6 | 'First (No Tracking)' | Post | 316.55 μs | 7.667 μs | 11.592 μs | 8.5000 | 1.0000 | - | 50.95 KB |
NHibernate | SQL | Post | 335.41 μs | 3.111 μs | 4.703 μs | 19.0000 | 1.0000 | - | 78.86 KB |
NHibernate | LINQ | Post | 807.79 μs | 27.207 μs | 45.719 μs | 8.0000 | 2.0000 | - | 53.65 KB |
Feel free to submit patches that include other ORMs - when running benchmarks, be sure to compile in Release and not attach a debugger (Ctrl+F5).
Alternatively, you might prefer Frans Bouma's RawDataAccessBencher test suite or OrmBenchmark.
Parameterized queries
Parameters are passed in as anonymous classes. This allow you to name your parameters easily and gives you the ability to simply cut-and-paste SQL snippets and run them in your db platform's Query analyzer.
new {A = 1, B = "b"} // A will be mapped to the param @A, B to the param @B
List Support
Dapper allows you to pass in IEnumerable<int>
and will automatically parameterize your query.
For example:
connection.Query<int>("select * from (select 1 as Id union all select 2 union all select 3) as X where Id in @Ids", new { Ids = new int[] { 1, 2, 3 } });
Will be translated to:
select * from (select 1 as Id union all select 2 union all select 3) as X where Id in (@Ids1, @Ids2, @Ids3)" // @Ids1 = 1 , @Ids2 = 2 , @Ids2 = 3
Literal replacements
Dapper supports literal replacements for bool and numeric types.
connection.Query("select * from User where UserTypeId = {=Admin}", new { UserTypeId.Admin });
The literal replacement is not sent as a parameter; this allows better plans and filtered index usage but should usually be used sparingly and after testing. This feature is particularly useful when the value being injected
is actually a fixed value (for example, a fixed "category id", "status code" or "region" that is specific to the query). For live data where you are considering literals, you might also want to consider and test provider-specific query hints like OPTIMIZE FOR UNKNOWN
with regular parameters.
Buffered vs Unbuffered readers
Dapper's default behavior is to execute your SQL and buffer the entire reader on return. This is ideal in most cases as it minimizes shared locks in the db and cuts down on db network time.
However when executing huge queries you may need to minimize memory footprint and only load objects as needed. To do so pass, buffered: false
into the Query
method.
Multi Mapping
Dapper allows you to map a single row to multiple objects. This is a key feature if you want to avoid extraneous querying and eager load associations.
Example:
Consider 2 classes: Post
and User
class Post
{
public int Id { get; set; }
public string Title { get; set; }
public string Content { get; set; }
public User Owner { get; set; }
}
class User
{
public int Id { get; set; }
public string Name { get; set; }
}
Now let us say that we want to map a query that joins both the posts and the users table. Until now if we needed to combine the result of 2 queries, we'd need a new object to express it but it makes more sense in this case to put the User
object inside the Post
object.
This is the use case for multi mapping. You tell dapper that the query returns a Post
and a User
object and then give it a function describing what you want to do with each of the rows containing both a Post
and a User
object. In our case, we want to take the user object and put it inside the post object. So we write the function:
(post, user) => { post.Owner = user; return post; }
The 3 type arguments to the Query
method specify what objects dapper should use to deserialize the row and what is going to be returned. We're going to interpret both rows as a combination of Post
and User
and we're returning back a Post
object. Hence the type declaration becomes
<Post, User, Post>
Everything put together, looks like this:
var sql =
@"select * from #Posts p
left join #Users u on u.Id = p.OwnerId
Order by p.Id";
var data = connection.Query<Post, User, Post>(sql, (post, user) => { post.Owner = user; return post;});
var post = data.First();
Assert.Equal("Sams Post1", post.Content);
Assert.Equal(1, post.Id);
Assert.Equal("Sam", post.Owner.Name);
Assert.Equal(99, post.Owner.Id);
Dapper is able to split the returned row by making an assumption that your Id columns are named Id
or id
. If your primary key is different or you would like to split the row at a point other than Id
, use the optional splitOn
parameter.
Multiple Results
Dapper allows you to process multiple result grids in a single query.
Example:
var sql =
@"
select * from Customers where CustomerId = @id
select * from Orders where CustomerId = @id
select * from Returns where CustomerId = @id";
using (var multi = connection.QueryMultiple(sql, new {id=selectedId}))
{
var customer = multi.Read<Customer>().Single();
var orders = multi.Read<Order>().ToList();
var returns = multi.Read<Return>().ToList();
...
}
Stored Procedures
Dapper fully supports stored procs:
var user = cnn.Query<User>("spGetUser", new {Id = 1},
commandType: CommandType.StoredProcedure).SingleOrDefault();
If you want something more fancy, you can do:
var p = new DynamicParameters();
p.Add("@a", 11);
p.Add("@b", dbType: DbType.Int32, direction: ParameterDirection.Output);
p.Add("@c", dbType: DbType.Int32, direction: ParameterDirection.ReturnValue);
cnn.Execute("spMagicProc", p, commandType: CommandType.StoredProcedure);
int b = p.Get<int>("@b");
int c = p.Get<int>("@c");
Ansi Strings and varchar
Dapper supports varchar params, if you are executing a where clause on a varchar column using a param be sure to pass it in this way:
Query<Thing>("select * from Thing where Name = @Name", new {Name = new DbString { Value = "abcde", IsFixedLength = true, Length = 10, IsAnsi = true });
On SQL Server it is crucial to use the unicode when querying unicode and ANSI when querying non unicode.
Type Switching Per Row
Usually you'll want to treat all rows from a given table as the same data type. However, there are some circumstances where it's useful to be able to parse different rows as different data types. This is where IDataReader.GetRowParser
comes in handy.
Imagine you have a database table named "Shapes" with the columns: Id
, Type
, and Data
, and you want to parse its rows into Circle
, Square
, or Triangle
objects based on the value of the Type column.
var shapes = new List<IShape>();
using (var reader = connection.ExecuteReader("select * from Shapes"))
{
// Generate a row parser for each type you expect.
// The generic type <IShape> is what the parser will return.
// The argument (typeof(*)) is the concrete type to parse.
var circleParser = reader.GetRowParser<IShape>(typeof(Circle));
var squareParser = reader.GetRowParser<IShape>(typeof(Square));
var triangleParser = reader.GetRowParser<IShape>(typeof(Triangle));
var typeColumnIndex = reader.GetOrdinal("Type");
while (reader.Read())
{
IShape shape;
var type = (ShapeType)reader.GetInt32(typeColumnIndex);
switch (type)
{
case ShapeType.Circle:
shape = circleParser(reader);
break;
case ShapeType.Square:
shape = squareParser(reader);
break;
case ShapeType.Triangle:
shape = triangleParser(reader);
break;
default:
throw new NotImplementedException();
}
shapes.Add(shape);
}
}
User Defined Variables in MySQL
In order to use Non-parameter SQL variables with MySql Connector, you have to add the following option to your connection string:
Allow User Variables=True
Make sure you don't provide Dapper with a property to map.
Limitations and caveats
Dapper caches information about every query it runs, this allows it to materialize objects quickly and process parameters quickly. The current implementation caches this information in a ConcurrentDictionary
object. Statements that are only used once are routinely flushed from this cache. Still, if you are generating SQL strings on the fly without using parameters it is possible you may hit memory issues.
Dapper's simplicity means that many feature that ORMs ship with are stripped out. It worries about the 95% scenario, and gives you the tools you need most of the time. It doesn't attempt to solve every problem.
Will Dapper work with my DB provider?
Dapper has no DB specific implementation details, it works across all .NET ADO providers including SQLite, SQL CE, Firebird, Oracle, MySQL, PostgreSQL and SQL Server.
Do you have a comprehensive list of examples?
Dapper has a comprehensive test suite in the test project.
Who is using this?
Dapper is in production use at Stack Overflow.